
Lecture 1 (28 Jan 2025)
Classical deterministic and randomized computation
Registers, states, gates, probabilities, expectations
Jaikumar Radhakrishnan
jaikumar.radhakrishnan@icts.res.in Please let me know if you spot an error.

We discuss classical deterministic circuits, and model the states of the
registers and the computation on them as vectors and linear transfor-
mations. Extending this discussion to randomized computation, and
model randomized states as probability vectors and stochastic matrices.
We introduce the temporary notation of ∣v⟫ and ⟪v∣ in the context of
classical computation and motivate the use of ∣v⟩ and ⟨v∣ in the context
of quantum computation.

Classical computation performed by a circuit looks like this
(Fig. 1). The wires represent registers. Each register holds a bit, that
is, 0 or 1.

Figure 1: A computation with n input
registers and m output registers

The state of the registers is modified by gates. The goal of com-
putation is transform the input state to the desired output state by
applying a small number of gates. The input state of the system with
n-input registers is an element of the set {0,1}n, the set of bit-strings
of length n; similarly, the state of output registers is an element of
{0,1}m. The first bit corresponds to the top-most register in the pic-
ture, and the last bit corresponds to the bottom-most.

Example 1 Consider the operation of the two-input and gate. There are
two input registers and one output register. Thus, and ∶ {0,1}2 → {0,1}.

Figure 2: The two-input AND gate

Let us consider the operation of the and gate in this example. The
truth table specifies this operation.

Input Output
00 0

01 0

10 0

11 1

Alternatively, the operation of the and gate can be specified by its
1× 2 matrix.

Mand = (
1 1 1 0
0 0 0 1

)

In general, to describe a computation T involving n input and m
output registers, we use a 2m × 2n matrix. We index the columns of
the matrix by the input states and the rows by the output states. If
a ∈ {0,1}m and b ∈ {0,1}n, then MT[a,b] is 1 if T(b) = a, and is
0 otherwise. Note that since the computation is deterministic, each
column of MT has exactly one 1. Note also that the way the matrix

Lecture 1: Classical deterministic and randomized computation 2

is written depends on the order in which the output and input states
are listed as indices for rows and columns: we will normally use the
lexicographic ordering, e.g., 000,001,010,011,100,101,110,111. If we
choose to describe the input-output behaviour of the computation
using matrices, then it is convenient to represent the states of the
registers as a column vector.

The input and output states for the two-input and gate above can
be described using state vectors

00↦

⎛
⎜⎜⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎟
⎠

01↦

⎛
⎜⎜⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟
⎠

10↦

⎛
⎜⎜⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟⎟⎟
⎠

11↦

⎛
⎜⎜⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟⎟⎟
⎠

0↦ (1
0
) 1↦ (0

1
)

If v⃗ represents the input state and w⃗ represents the output state, then

w⃗ = Mtv⃗,

where we use the familiar method to multiply matrices.

Figure 3: T1 and T2 in seriesNow, suppose our computation T consists of two smaller compu-
tations executed in series, T1 (with n1 input registers and n2 output
registers) followed by T2 (with n2 input registers and n3 output reg-
isters). Then, the 2n3 × 2n1 matrix of the computation T can be recov-
ered from the 2n2 × 2n1 matrix of MT1 and the 2n3 × 2n2 matrix MT2

using matrix multiplication: MT = MT2 ⋅MT1 . What if the compu-
tations were performed in parallel? Let us first understand the two
simple cases.

Figure 4: The two-input AND gate in
parallel with identityIn the first, the and gate is applied to the first two registers, and

the third register is undisturbed; in the second case, the and is ap-
plied to the last two registers. Clearly, the matrix MT of the final
computation can be obtained by inspecting the matrices for MT1 and
MT2 . How exactly? If we examine the input-output behaviour of the
two circuits, we obtain the following matrices in the two cases

MT1 = (
1 1 1 0
0 0 0 1

) MT2 = (
1 0
0 1

) MT =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

MT1 = (
1 0
0 1
) MT2 = (

1 1 1 0
0 0 0 1

) MT =

⎛
⎜⎜⎜⎜⎜
⎝

1 1 1 0
0 0 0 1

1 1 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

Lecture 1: Classical deterministic and randomized computation 3

We learn that the general rule for obtaining the matrix for the com-
putation T on built out of the parallel execution of the operations
T1 and T2 is the following: (i) MT is a 2m1+m2 × 2n1+n2 matrix; (ii) For
x1 ∈ {0,1}n1 , x2 ∈ {0,1}n2 , y1 ∈ {0,1}m1 , y2 ∈ {0,1}m2 , we have

MT[y1y2, x1x2] = MT1[y1, x1] ⋅MT2[y2, x2].

We then say that MT is the tensor product (more correctly Kronecker
product) of MT1 and MT2 , and write MT = MT1 ⊗MT2 . Once again,
when writing down the matrix explicitly, one needs to pay some
attention to how the columns and rows are indexed.

Self-check 1 Let us modify Fig. 4 with and gate replaced by a parity

gate. While the and gate outputs the bitwise AND of the two input regis-
ters, the parity gate outputs the bitwise XOR (⊕) of the two input regis-
ters. Clearly write down the matrices for MT1 and MT2 . Using these, for
each circuit, write down the final matrix MT .

Reversible computation

Figure 5: The NOT gate

The operations we commonly use for implementing deterministic
computation are not all reversible. Indeed, if the number of input
registers is more than then number of output registers, then there
must be two input states that lead to the same output state. If we
have fewer input registers than output registers, then the ‘inverse’
will have an excess of input registers. While we aim to show that
quantum computation offers us more power in certain circumstances,
we will need to rely on tasks that we already know to perform de-
terministically. It will be important for us then that our classical
computation is reversible and clean.

Figure 6: The Toffoli gate

Figure 7: The Fredkin gate

We know that all classical computation can be performed using
two-input and gates and not gates. The not gate is reversible.

Mnot = (
0 1
1 0
)

The actions of the and gate are not reversible. However, it is possible
to realize an and gate or an or gate (and also the NOT gate) by
suitably specializing reversible gates, the Toffoli gate and Fredkin
gate, both of which operate on three registers.

Clearly, these gates are their own inverses. All classical computa-
tion can be performed using either of these gates alone, with some
acceptable loss in efficiency. For example, we may compute the three
input and(x, y, z) using two two-input Toffoli gates.

Figure 8: A three-input AND build out
of Toffoli gatesSelf-check 2 We have seen that and(x, y) can be computed with just one

Toffoli gate. Use (one or more) Toffoli gates to compute or(x, y). Draw your
final circuit similar to Fig. 8. You may want to use the De Morgan’s law.

https://www.theoremoftheday.org/LogicAndComputerScience/DeMorgan/TotDDeMorgan.pdf

Lecture 1: Classical deterministic and randomized computation 4

Self-check 3 A controlled NOT or CNOT gate flips the second register if
the first register has a 1. That is, cnot(x, y) = (x, y⊕ x). Verify that cnot

is reversible and can be implemented using a Toffoli gate.

Restoring the workspace

Figure 9: Garbage collects in the
workspace

Computations often require additional workspace, registers that are
involved in intermediate computations. Suppose we have a computa-
tion that involves some workspace registers. Note that in the end the
workspace contains information that we are not interested in. In clas-
sical computation, the presence of ’garbage’ in the workspace poses
no problem. However, as will see, for such classical computation to
be deployed as part of a bigger quantum algorithm, we must restore
the workspace to its original state. This is actually easily achieved:
copy the output and reverse the computation.

Figure 10: Restoring the workspace

Note that if the output register started of in the state b, then its
final state would be b⊕ f (x). We record this observations as follows.

Proposition 1 Suppose there is a classical circuit that computes a func-
tion f ∶ {0,1}m → {0,1}n using k AND and NOT gates, then there is a
reversible transformation T ∶ {0,1}m+n+ℓ → {0,1}m+n+ℓ such that

• ℓ = O(k), that is, the number of work registers we need is not more than
the number of gates in the original circuit;

• T can be realized using O(k) Toffoli gates;

• For all x ∈ {0,1}m and b ∈ {0,1}n, T maps (x, b,0ℓ) to (x, b⊕ f (x),0ℓ).

Self-check 4 Redo Self-check 2 to have the workspace restored to its origi-
nal state.

Classical randomized computation

Consider the state of n registers on which a randomized computation
has been performed. The state is a probability distribution on {0,1}n,
and can be written as a probability vector. E.g., the state where each
of the 2n possibilities has equal probabilities is represented by the
probability vector

⎛
⎜⎜⎜⎜⎜
⎝

1/2n

1/2n

⋮
1/2n

⎞
⎟⎟⎟⎟⎟
⎠

.

We will use a $ gate (a dollar gate) to model a coin toss; when this
gate is applied to a register, the resulting state is equally likely to be
0 or 1 irrespective of what the register contained initially, and inde-
pendently of the action of the other $ gates; it is natural, therefore, to

Lecture 1: Classical deterministic and randomized computation 5

describe the state after the application of a $ gate by (1/2
1/2). Suppose

n registers start off in the state 00⋯0. Now if the $ gate is applied
to all but the first register. The joint state of these registers then will
be a uniform distribution on the possibilities of the form 0x, where
x ∈ {0,1}n−1. The probability vector corresponding to this state is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/2n−1

1/2n−1

⋮
1/2n−1

0
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that the classical deterministic states can be thought of as spe-
cial randomized states, where all the probability is entirely concen-
trated on only one outcome. Consider the circuit with two registers
where a $ gate is applied to the first register, and then a controlled-
not is applied with the first register acting as control (we flip the
state of the second register if the first register contains a 1).

MCNOT ≡

⎛
⎜⎜⎜⎜⎜
⎝

1 0
0 1

0 1
1 0

⎞
⎟⎟⎟⎟⎟
⎠

In the state that results in the end, the outcomes 00 and 11 have
probability 1/2, and the other two outcome have probability 0, so it
corresponds to the probability vector

⎛
⎜⎜⎜⎜⎜
⎝

1/2
0
0

1/2

⎞
⎟⎟⎟⎟⎟
⎠

.

Just as we did for deterministic computation, the computation of cir-
cuits that involve $ gates can be described by matrices. For example,
the $ gate itself corresponds to the corresponds to the 2 × 2 matrix

(1/2 1/2
1/2 1/2).

Self-check 5 What 4 × 4 matrix describes the computation of the above
circuit?

Lecture 1: Classical deterministic and randomized computation 6

States, random variables, events

We will give randomized states names: ∣p⟫, ∣q⟫, . . . , ∣α⟫, ∣β⟫, etc.
As we saw, these states can be described by probability vectors, but
it is often easier to manipulate the states using their names than
working with probability vectors. Consider a randomized sys-
tem with two registers. Then, we have the following special states:
∣00⟫, ∣01⟫, ∣10⟫, ∣11⟫. The uniform distribution on two-registers is the
state:

∣u⟫ = 1
4
∣00⟫ + 1

4
∣01⟫ + 1

4
∣10⟫ + 1

4
∣11⟫.

If the registers have names, say A, B, and we want to emphasize
them, then we write them as subscripts: ∣u⟫AB, ∣10⟫AB, etc.

Random variables assign values to the outcomes of a probabilis-
tic experiment. E.g., in a system with two registers, the function
wt ∶ {0,1}2 → R, that maps the outcome a1a2 to a1 + a2 is a random
variable. Now, if ∣p⟫ is a state of the two registers, then we may com-
pute the expectation of a random variable X as follows:

E[X] = ∑
a

X(a)p(a),

where a ranges over the possible outcome of the system. It will be
convenient to describe random variables as row vectors (for we will
later make them interact with states, which we have chosen to de-
scribe as column vectors), e.g.,

wt = (wt(00) wt(01) wt(10) wt(11)) = (0 1 1 2) .

Then, we can obtain the expectation of wt in the state ∣p⟫ by multi-
plying the row with a column:

(0 1 1 2)

⎛
⎜⎜⎜⎜⎜
⎝

p00
p01
p10
p11

⎞
⎟⎟⎟⎟⎟
⎠

.

In this way, every random variable maps a probabilistic state to a
scalar. This function is linear on the states. We denote the linear func-
tion associated with the random variable X by ⟪X∣, and write ⟪X∣p⟫
to denote the scalar that results on the application of this function to
the state ∣p⟫; thus, ⟪X∣p⟫ = Ep[X]. A special case of random variables
are indicator functions of event. Recall that we formally define an
event as a subset of outcomes; e.g., for a system with three registers,
we have

odd parity = {001,010,100,111};
majority = {011,101,110,111};

the third bit is 1 = {001,011,101,111}.

Lecture 1: Classical deterministic and randomized computation 7

For each of them, we may define a 0-1 indicator random variable,
which takes the value 1 precisely when the outcome is in the set; e.g.,

odd parity(a1a2a3) = 1 iff a1 + a2 + a3 = 1 (mod 2).

Self-check 6 What row vectors correspond to the linear functions ⟪odd parity∣,
⟪majority∣, ⟪the third bit is 1∣?

Note that if IA is the indicator random variable for the event A,
then ⟪IA∣p⟫ = Ep[IA] = Prp[A].

Returning to random variables in general, note that we may add
random variables: (f + g)(w) = f (w) + g(w); the corresponding linear
function is written as ⟪ f ∣ + ⟪g∣. We then, have the rule (⟪ f ∣ + ⟪g∣)∣p⟫ =
⟪ f ∣p⟫ + ⟪g∣p⟫. We may also scale a random variable: (c f)(w) = c f (w),
and check that ⟪c f ∣p⟫ = c⟪ f ∣p⟫. We may derive the linearity property
of the expectation for random variables as a consequence of the above
discussion:

Ep[aX + bY] = ⟪aX∣p⟫ + ⟪bY∣p⟫ = a⟪X∣p⟫ + b⟪Y∣p⟫ = a Ep[X] + b Ep[Y].

Randomized transformations

Recall that with each outcome b ∈ {0,1}n of a system of n-registers,
there is a linear function ⟪b∣ (e.g., we have ⟪01∣, ⟪00∣), which takes the
value 1 on the deterministic state ∣b⟫ and 0 on ∣b′⟫ for b′ ∈ {0,1}n ∖
{b}; the column vectors corresponding to these states have exactly
one 1. If a randomized computation take the deterministic input
state b to a state ∣pb⟫, then the transformation performed by this
computation can be written as:

∑
b∈{0,1}n

∣pb⟫⟪b∣.

When we substitute the corresponding column and row vectors for
∣pb⟫ and ⟪b∣, then the expression becomes precisely the matrix corre-
sponding to the computation. For example, the randomized transfor-
mation (two input register, one output register)

(1 1/2 1/3 0
0 1/2 2/3 1

)

can be written as

∣0⟫⟪00∣ + (1
2
∣0⟫ + 1

2
∣1⟫)⟪01∣ + (1

3
∣0⟫ + 2

3
∣1⟫)⟪10∣ + ∣1⟫⟪11∣.

Self-check 7 Consider the following randomized transformation given by

∣0⟫⟪00∣ + (1
2
∣0⟫ + 1

2
∣1⟫) (⟪01∣ + ⟪10∣) + ∣1⟫⟪11∣

Verify that for each a ∈ {0,1}, this transformation always maps ⟪aa∣ to ∣a⟫
and maps ⟪aa∣ to ∣0⟫ with probability 1

2 and to ∣1⟫ with probability 1
2 .

Lecture 1: Classical deterministic and randomized computation 8

Summary

• We use ∣p⟫, ∣q⟫, etc., to represent classical states; for randomized
computation, these states can be associated with probability vec-
tors, e.g., the result of applying the $ gate on n-registers corre-
sponds to the probability vector with 2n entries, each 1/2n.

• Classical random variables (including indicator random variables
of events) are represented using ⟪X∣, ⟪Y∣, . . . , ⟪odd parity∣, etc.,
and associated with appropriate row vectors. In particular, the
expectation of the random variable X is ⟪X∣p⟫, and the probability
of an event A is ⟪IA∣p⟫.

• An expression of the form ∣p⟫⟪b∣, where b ∈ {0, 1}m represents a
deterministic state (on n registers) and p represents a probabilistic
state on m registers, can be thought of as a (partial) input output
transformation that maps the deterministic input state ∣b⟫ to the
probabilistic state ∣p⟫; we can combine such expressions to ob-
tain expressions for transformations performed by randomized
computation.

Looking ahead: quantum states and measurements

The state1 of a quantum system with n registers is described by as- 1 Here we only consider pure states;
to deal with quantum systems in full-
generality, we must consider mixed
states, which can be thought of as
probabilistic generalizations of pure
states.

sociating amplitudes with each outcome in {0,1}n. So the state of a
single qubit register associates amplitudes with each of the outcomes
0 and 1 (just as the randomized state associated probabilities with
them). We write these states as

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ ,

where α and β are complex numbers2 such that ∣α∣2 + ∣β∣2 = 1. We 2 That these coefficients are complex
will not be crucial for most of the dis-
cussion. In fact, all quantum algorithms
can be implemented without recourse
to complex coefficients.

represent these states by column vectors of the form (α

β
). States of

the form ∣b⟩ (b ∈ {0,1}n) are computational basis states; when the system
is in such a basis state, the amplitude is 1 for the ‘outcome’ b and
zero for all other outcomes in {0,1}n.

The role that was earlier played by indicators random variable of
an event is played by objects that we write as ⟨ψ∣. E.g., for a system
with two registers, we have ⟨00∣, such that ⟨00∣b⟩ = 1 if b = 00 and 0 if
b ∈ {0,1}2 ∖ {00}. In general, the vector ⟨ψ∣ is associated with a com-
plex row vector of unit length; the sum of the square of the absolute
values of its entries should be 1. In general, we have a quantum state
∣ψ⟩ (which need not be one of the computational basis states), and
for each state ∣ψ⟩, we have a dual vector ⟨ψ∣ such that ⟨ψ∣ψ⟩ = 1 and
⟨ψ∣ψ′⟩ = 0 for all states ∣ψ′⟩ that are orthogonal to ∣ψ⟩. The row vector

Lecture 1: Classical deterministic and randomized computation 9

associated with ⟨ψ∣ is the conjugate transpose of the column vector
corresponding to ∣ψ⟩.

The quantity ∣ ⟨ψ∣ϕ⟩ ∣2 (note the square) is closely related to the
probability of the outcomes that result from a quantum operation
called measurement. We will familiarize ourselves with these in the
next class.

(Last updated on Monday 9
th June, 2025, 07:03 UTC)

	Reversible computation
	Classical randomized computation
	Summary
	Looking ahead: quantum states and measurements

