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We discuss circuits with quantum registers, and model the states of the
registers and the computation on them as vectors and linear transfor-
mations. We observe that the evolution of quantum states is tracked
using linear algebraic computations using unitary matrices, analogous
to how we tracked randomized computation using stochastic matrices.
We will study how probabilities arise when a state is measured in a ba-
sis. We will study the state of a qubit, and visualize the actions of Pauli
and Hadamard matrices using rotations and reflections performed on
the Bloch sphere. Finally, we present the well-known quantum circuits
of (i) superdense coding and (ii) Deutsch.

Quantum computation is performed by quantum circuits consist-

ing of quantum registers and quantum gates. The picture is very

similar to the ones we have seen for classical computing, but there

are crucial differences:

(i) The state of the registers is no longer a probability distribution

(i)

over basis states, but a superposition. Suppose there are n regis-
ters. These registers have computational basis states of the form |x)
for x € {0,1}". These are special states corresponding to an obser-
vation that can distinguish between them. However, the n registers
can in general be in a state of the form

> axlx),

xe{0,1}"

where the a,’s are complex numbers such that ¥ [ax|*> = 1. The
coefficients «,’s are called amplitudes, and the linear combination
is called a superposition of basis states. We will use i), |¢), etc., to
denote denote quantum states. If we arrange the 2" amplitudes as
a column vector indexed by x € {0,1}", then we get an alternative
representation of the quantum state; note that we get a unit vector
with respect to the standard inner-product in the 2"-dimensional
vector space C?". The above description corresponds to a pure
quantum state; we will discuss the more general notion of a mixed
state later.

As operations are performed on the registers, their state evolves
linearly, that is, the corresponding transformation T satisfies,
T(«|v)+ Blw)) =aT|v) + BT |w). There is a constraint: the operation
must preserve the length of the vector, implying that the 2" x 2"

Please let me know if you spot an error.
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(iii)

matrix corresponding to the linear transformation is unitary. The
reversible classical gates we encountered before are clearly unitary.
The dollar gate, which is central to our definition of randomized
computation, is not reversible. Yet, we will see that randomized
computation can be embedded in a suitable quantum computa-
tion. As in our study of randomized algorithms, the main goal will
be efficiency, i.e., realizing the desired unitary using a circuit with
a small number of gates and a small number of additional regis-
ters. Transformations implemented using quantum circuits that
rely on additional work registers (called ancilla) but discard them
in the end, are rather more involved: to understand them in some
generality, we will need to go beyond pure states and unitary op-
erations.

Probabilities arise in quantum computation when states are mea-
sured. Suppose |) is the state of a system of n registers—we may
think of |ip) as a vector in C?", that records the amplitudes cor-
responding to each basis state. When the registers are measured
(in the standard basis), we obtain an outcome and the state of the
registers collapses to a state that is consistent with the outcome.
When we measure n registers that are in the n-qubit state

)= X axlx),

xe{0,1}"

in the standard basis, we obtain one of the outcomes in {0, 1}", just
as we would if we were to observe the state of a classical register
which is in the state |p)) = ¥1e(0,1}7 Px|x). However in the quan-
tum measurement, the probability of obtaining the outcome x is
e |?; note that we assumed that Yxe{o,1}" lax|? = 1. Tt is as if the n
registers now take on the classical state Y c0,11n o |?|x). Then, if
the outcome x is observed, the state collapses to the classical state
|x)). The framework just outlined will be adequate for the study
of quantum algorithms, where one usually makes a measurement
only at the end. However, this framework leaves the results un-
specified in two important situations: (i) What happens if only
some of the registers are measured?, (ii) What happens if the state
is evolved together with some ancilla registers, and then some

of the registers are discarded (we may then be left with fewer or
more registers than we started with)? To systematically address
these two questions, we will have to adopt a notion of a quantum
state that simultaneously incorporates quantum superpositions
and classical probability. The notion of quantum operations will
also have to be enlarged to incorporate actions that add and dis-
card registers, or use classical randomness.
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Quantum gates

All classical reversible gates are quantum gates; a classical circuit
consisting of reversible gates can be used as a quantum circuit. In
particular, the NOT gate, the CNOT gate, the Fredkin gate and the
Toffoli gate are valid quantum gates. Suppose we have such a circuit
C acting on #n classical registers. The action of C corresponds to a ma-
trix with 2" rows and 2" columns, where each row and each column
has exactly one 1. Often, it is easier to describe the action of such cir-
cuits using |x) and (y|, which are the quantum analogues of |x}) and
{y| that we used earlier. Thus, the CNOT gate is written as

100) (00| +[01) {01] + |10} (11] +|11) {10].

For the moment, we consider (x| only when x is a standard basis
state, that is, a string of zeros and ones; when (x| meets |y) (assuming
x and y have the same number of symbols), we get (x|y), which the
scalar 0 if x # y and 1 if x = y.

Example 1 (The swap gate) The Swap gate acts on two registers and
'swaps their state’. That is, it acts as follows: |xy) — |yx), or more elabo-
rately,

|00) (00| +|01) (10| +[10) (01| +|11) (11].

The action of such gates on superpositions of basis states follows
rules that are familiar to us from classical randomized computing.
Apart from these ‘classical” gates, we will allow the use of some gates
that do not have classical analogues. We allow all single-qubit gates
that preserve the length of the state vector, that is, whose 2 x 2 matri-
ces are unitary. In particular, we allow the single-bit rotation gates,

Roty = (c059 —sin6

) (6 € [0,277)), the remarkable Walsh-Hadamard
sinf  cosf

1 1 1
gate H = % (1 1), the Pauli gates X = ((1) 0) (another name

for the NOT gate), Y = (? E)l), and the Z = ((1) 01) (also called

the phase-flip gate). There are many more gates, of course (see, e.g.,
Wiki’s list of quantum gates). It is clearly, unrealistic to allow com-
putation with gates without considering if they can be implemented
in practice on the specific platform used for quantum computation.
In particular, rotations by very precisely specified angles are clearly
questionable. Similarly, we are likely to be able to tell the difference
if we substitute one operation by another operation whose matrix

is close to that of the original one. In our discussion of algorithms,
we will pay little attention to such practical considerations, though
they are likely to very important when algorithms are required to

Figure 1: The two-qubit swap gate
(Source: Wiki)


https://en.wikipedia.org/wiki/List_of_quantum_logic_gates
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implemented on a physical platform. It turns out that we may restrict
attention to a finite set of gates for all our quantum computation. In
particular, computation performed using ¢ gates from one set of two-
qubit gates can be implemented with precision € using gates from
the set {H,CNOT, Rot,/g} with at most tlog”(t/e) gates for ¢ = 3.97
(this is know as the Solovay-Kitaev theorem, see Dawson and Nielsen
or AM Child’s lecture notes). While presenting our quantum algo-
rithms, we will assume that arbitrary two-qubit gates are available,
although most of the time, controlled version of the single qubit gate
is all we need.

Self-check 1 Recall the cNoOT gate from Lecture 1 given by cNOT(x,y) =
(x,y ® x). Implement the swap gate (from example 1) using CNOT gates.

Use the following idea from programming to swap two variables without a

temporary storage.

X<X+Y, Y<X-Y X<X-V;

The Bloch sphere

The state of qubit is a unit two-dimensional complex vector with
amplitudes corresponding to |0) and |1). Since probabilities are ob-
tained by squaring the absolute value of the amplitudes, multiplying
such a state vector by a until complex number does not change the
behaviour of the measurements. In this sense, the representation of
the state vector as a unit complex vector is redundant: %ﬂo) - 1))
and %(|O) —|1)) correspond to same state of the qubit. If we were
to be careful, we would say that the state of single qubit register is a
vector of the form [1p) = cos (§)[0) + e sin (§) 1), where 6 € [0, ]
and ¢ € [0,271). Such a state is conveniently represented on the unit

sphere in R>—the Bloch sphere..

Note that |0) is the north-pole and [1) is the south-pole. Every
point on the equator corresponds to an ‘equal” superposition of |0)
and |1); in particular, the point where the X-axis meets the sphere is

the %(\O) +|1)). A Bloch sphere also helps in visualizing operations

on a qubit it. For example, orthogonal states correspond to antipodal Figure 2: The Bloch sphere (source:

vectors on the sphere (check!). The Pauli gates X, Y, and Z corre- Wiki)
spond to rotations by 7t of vectors on the Block sphere, respectively

about the X-axis, Y-axis and the Z-axis. In fact, the action of any uni-

tary operation U on a qubit corresponds to rotation about a certain

axis (the axis formed by the eigen vectors of U). The Hadamard gate

H corresponds to rotation about the axis that makes angle § with

both the X-axis and the Z-axis; the two states that lie on this axis

are %ﬂo) +|1)) and %ﬂo) —|1)), the eigen vectors of H. The Bloch

sphere offers an appealing platform for visualizing single-qubit states

<Y


https://arxiv.org/pdf/quant-ph/0505030
https://www.cs.umd.edu/~amchilds/qa/qa.pdf
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and operations on them, but its utility for quantum algorithms is
generally limited. (If used without care, it can sometimes be mislead-
ing: we said that rotation by an angle 7 about the Z-axis corresponds
to the Pauli Z gate, which seems to suggest that it maps both |0) and
|1) to themselves, but in fact it maps |1) to —|1).)

Deutsch’s algorithm: phase kickback

Consider a quantum circuit F that implements a function f from
{0,1} to {0,1} in a reversibly. That is, F has two registers A and B,
and acts as follows on basis states. F : (x,y) — (x,y® f(x)). We are
given a circuit computing F and we would like to determine if f is

a constant function. This is Deutsch’s problem. We may embed C in
bigger circuit, generate arbitrary quantum states on the two registers
and process the state that results before making the final measure-
ment to determine the answer. No classical randomized method can
correctly determine the answer with probability of correctness bet-
ter than % (why?) if it is allowed to probe F only once, that is, if C

is allowed to have only one copy of F embedded in it. On the other |0
hand, the following quantum circuit, which has only one copy of F, Uy

determines the answer correctly with probability 1. |1 L
The method is based on a uniquely quantum phenomenon that

i ] ) Figure 3: The circuit for the Deutsch’s
has come to be known as phase kickback. If the input registers to F problem (credit: Timoteo Carletti)

are prepared in the state % |b) (]0) —|1)), the registers come out in

the state O b) (|0) - |1)) (the (-1)*U(®=f(1)) is the phase
kick-back). Note that the second register is ‘restored’ to the state it
started in. So focusing on the first register alone, we have have two
cases. If £(0) = f(1) (f is a constant function), then the circuit behaves
like the identity gate; if f(0) # f(1), the the circuit behaves like a Z
gate. Is there a state that we could prepare the input registers in so
that I and Z would take them to orthogonal states? Indeed, the state
% (|0} +]1)). Putting these ideas together, we obtain a circuit fig. 3 to
solve the Deutsch’s problem (with no error).

The EPR state, entanglement, superdense coding

Suppose we have two quantum registers, each holding a qubit. They
are originally in the following state (how might have they got into
this state?):

[EPR),; = é (10) 410} + (1) 4 1))

Now consider the action of the following four operations on register
A: I, X, Z and ZX (not doing anything on B amounts to appying the


https://en.wikipedia.org/wiki/Phase_kickback
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identity on it). We have

(I4® I5) [EPR) ; = ¢1§ (10) 41005 + 1) 4 11)5)

(X@ I5) [EPR) 5 = ¢1§ (1£) 41005 +10) 4 11)5)

(Z® Iy)[EPR) ;p = ¢1§ (10) 1005 - 1) 11)5)
1

(ZX ® Ip) [EPR) 45 = (=11 410)5+10) 411)5)

S

Note that the four states that result are mutually orthogonal. Thus,
there is a unitary transformation U,p that maps the states [00) 4,
|10) 45, [01) 4 and |11) 45 to them respectively. Indeed, applying the
Hadamard gate to A followed by CNOT to AB (controlled by A)
achieves precisely this mapping (check!). This observation can be

used to efficiently transmit classical information in the presence of

entanglement.

Suppose there are two parties, Alice and Bob. Alice has two bits ) ) :
. . 5 . Figure 4: Superdense coding (credit:
of information: a1a; ... € {0,1}". Alice and Bob have two other other Walter V. Pogosov)

registers A and B, where register A is in Alice’s possession and regis-

ter B is in Bob’s possession. These registers are in the state |[EPR) 4 5.

(In ??, Bob prepares |[EPR) ,; and send the register A over to Alice.)

The equations above show how by selectively apply Z and X to the

register A alone, Alice can produce four mutually orthogonal two-

qubit states. If she then sends register A to Bob, the state of the pair

of registers A and B together can reveal precisely which of four pos-

sible operations (namely, no operation, only X, only Z and ZX) Alice

had performed on register A. So the strategy is as follows. First, if

ap =1, then Alice applies X to register A; next if a; = 1, then Alice ap-

plies Z to A. Alice send A over to Bob, who determines the bits a;a;

using the inverse of the operation U 4p discussed above (see fig. 4). (Last updated on Tuesday 10 June, 2025, 12:06)
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