Problem Solving Session - I

Question 1: Recall the following

- (a) Write down the matrix for the controlled Z gate.
- (b) In the following circuit, what should be "?" so that we can get a controlled Z gate from a controlled X gate?

Question 2: Recall that $H^{\otimes n} = H \underbrace{\otimes \ldots \otimes}_{\text{n times}} H$. This is the same as applying H individually on each of the n registers.

- 1. What is $H^{\otimes 3} |010\rangle$?
- 2. Let $x_1 \in \{0, 1\}$ and $H|x_1\rangle = \alpha |0\rangle + \beta |1\rangle$. Express α and β as a function of x_1 .
- 3. Let $x_1, x_2 \in \{0, 1\}$ and $H^{\otimes 2} |x_1 x_2\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$. Express $\alpha_{00}, \alpha_{01}, \alpha_{10}$ and α_{11} as a function of x_1 and x_2 .
- 4. Let $x_1, \ldots, x_n \in \{0, 1\}$ and $H^{\otimes n} | x_1 x_2 \ldots x_n \rangle = \sum_{y \in \{0, 1\}^n} \alpha_y | y \rangle$. For each $y \in \{0, 1\}^n$, express α_y as a function of x_1, \ldots, x_n [Note: Your expression of α_y must depend on x_1, \ldots, x_n as well as y_1, \ldots, y_n].

Question 3: Let $L = \{00, 01, 10, 11\}$ with the state 01 be marked. Let O_L be a phase oracle that implements it. This means, $O_L |xy\rangle = \begin{cases} -|01\rangle & \text{if } xy = 01\\ |xy\rangle & \text{otherwise} \end{cases}$ The following circuit implements a Grover search for the element 01 in L.

Write down the value of the state at all the slices from 1 through 7 with $|00\rangle$ being the initial state.