QUIZ 7

Suppose registers A (with Alice) and B (with Bob) are in the state

$$|\psi_0\rangle = \alpha |00\rangle_{AB} + \beta |11\rangle_{AB}$$
.

Here α and β are unknown to Alice and Bob. Note that (we will explain this in class) unlike in the classical randomized case, the reduced (marginal) state of register B is not exactly $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$. Alice would like to help Bob obtain $|\psi\rangle$ in his register B.

Question 1: Suppose Alice applies the Hadamard gate to the register A. By grouping terms appropriately, write the resulting state in the form

$$|\psi_1\rangle_{AB} = \frac{1}{\sqrt{2}} |0\rangle_A (a |0\rangle_B + b |1\rangle_B) + \frac{1}{\sqrt{2}} |1\rangle_A (c |0\rangle_B + d |1\rangle_B).$$

Write a, b, c, d in terms of α and β ?

$$a =$$
_____, $b =$ _____, $c =$ _____, $d =$ _____.

Now assume Alice measures register A.

Question 2: Suppose Alice's measurement yields a 0. Alice needs to tell Bob to apply a certain single-qubit gate G_0 on register B so that register B's state becomes $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$. What should gate G_0 be?

$$G_0 =$$

Question 3: Next, suppose Alice's measurement yields a 1. What gate G_1 must Alice ask Bob to apply on B so that register B's state becomes $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$. What should gate G_1 be?

$$G_1 =$$
