QUIZ 8

Space, subspace: Let $V_n = \{0,1\}^n$, $N = |V_n| = 2^n$. We add and subtract elements in V_n component-wise modulo 2. So 0^n is the *identity* for addition, and $x \in V_n$ is its own additive inverse (because $x + x = 0^n$). A subset $S \subset V_n$ is a subspace (or subgroup) of V_n if it is closed under addition.

Question 1: Which of the following are subspaces of V_4 ?

$$S_1 = \{0000, 0110\}$$
 $S_2 = \{0000, 0100, 0010, 1100\}$ $S_3 = \{0000\}$ $S_4 = \{0000, 0001, 1000, 1001, 0110, 0111, 1110, 1111\}$

Perpendicular subspace: For $x, y \in V_n$, let

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \pmod{2}$$
.

For a subspace S of V_n , let

$$S^{\perp} = \{ y \in V_n : x \cdot y = 0 \text{ for all } x \in S \}.$$

Question 2: What is S_3^{\perp} ?

The Hadamard transform and subspaces: For a subspace S of V_n , let

$$|S\rangle = \frac{1}{\sqrt{|S|}} \sum_{x \in \{0,1\}^n} |x\rangle.$$

Recall that

$$H^{\otimes n}: |x\rangle \to \frac{1}{\sqrt{N}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle.$$

Question 3: Compute $H^{\otimes 4}|S_1\rangle$.